Problem set 4

Due date: 18th Feb

Part A (submit any three)

- **Exercise 28.** (1) Let $X \ge 0$ be a r.v on $(\Omega, \mathcal{F}, \mathbf{P})$ with $0 < \mathbf{E}[X] < \infty$. Then, define $\mathbf{Q}(A) = \mathbf{E}[X\mathbf{1}_A]/\mathbf{E}[X]$ for any $A \in \mathcal{F}$. Show that \mathbf{Q} is a probability measure on \mathcal{F} . Further, show that for any bounded random variable Y, we have $\mathbf{E}_{\mathbf{Q}}[Y] = \frac{\mathbf{E}[YX]}{\mathbf{E}[X]}$.
 - (2) If μ and ν are Borel probability measures on the line with continuous densities f and g (respectively) w.r.t. Lebesgue measure. Under what conditions can you assert that μ has a density w.r.t ν ? In that case, what is that density?

Exercise 29. For $p = 1, 2, \infty$, check that $||X - Y||_p$ is a metric on the space $L^p := \{[X] : ||X||_p < \infty\}$ (here [X] denotes the equivalence class of X under the equivalence relation $X \sim Y$ if $\mathbf{P}(X = Y) = 1$).

- **Exercise 30.** (1) If X is a non-negative r.v., show that $\mathbf{E}[X] = \int_0^\infty \mathbf{P}[X > t] dt$. What analogous formula holds for a general integrable r.v.?
 - (2) If *X* is a non-negative integer valued r.v., then $\mathbf{E}[X] = \sum_{n=1}^{\infty} \mathbf{P}(X \ge n)$.

Exercise 31. Show that the values $\mathbf{E}[f \circ X]$ as *f* varies over the class of all smooth (infinitely differentiable), compactly supported functions determine the distribution of *X*.

Exercise 32. (i) Express the mean and variance of of aX + b in terms of the same quantities for X (a, b are constants). (ii) Show that $Var(X) = E[X^2] - E[X]^2$.

Part B (submit any two)

Exercise 33. Compute mean, variance and moments (as many as possible!) of the Normal(0,1), exponential(1), Beta(p,q) distributions.

Exercise 34. (1) If X_n are non-negative r.v. and $X_n \downarrow X$, and $\mathbf{E}[X_n] < \infty$ for some *n*, then show that $\mathbf{E}[X_n] \to \mathbf{E}[X]$. (2) If $\mathbf{E}[|X|] < \infty$, then $\mathbf{E}[|X|\mathbf{1}_{|X|>A}] \to 0$ as $A \to \infty$.

Exercise 35. (1) Suppose (X,Y) has a continuous density f(x,y). Find the density of X/Y. Apply to the case when (X,Y) has the *standard bivariate normal distribution* with density $f(x,y) = (2\pi)^{-1} \exp\{-\frac{x^2+y^2}{2}\}$.

- (2) Find the distribution of X + Y if (X, Y) has the standard bivariate normal distribution.
- (3) Let $U = \min\{X, Y\}$ and $V = \max\{X, Y\}$. Find the density of (U, V).

Exercise 36. Let $\mu_n, \mu \in \mathcal{P}(\mathbb{R}^n)$. Show that $\mu_n \xrightarrow{d} \mu$ if and only if $\int f d\mu_n \to \int f d\mu$ for every $f \in C_b(\mathbb{R})$.