Problem set 4

Due date: 18th Feb

Part A (submit any three)

Exercise 28. (1) Let $X \geq 0$ be a r.v on $(\Omega, \mathcal{F}, \mathbf{P})$ with $0<\mathbf{E}[X]<\infty$. Then, define $\mathbf{Q}(A)=\mathbf{E}\left[X \mathbf{1}_{A}\right] / \mathbf{E}[X]$ for any $A \in \mathcal{F}$. Show that \mathbf{Q} is a probability measure on \mathcal{F}. Further, show that for any bounded random variable Y, we have $\mathbf{E}_{\mathbf{Q}}[Y]=\frac{\mathbf{E}[Y X]}{\mathbf{E}_{[X]}}$.
(2) If μ and ν are Borel probability measures on the line with continuous densities f and g (respectively) w.r.t. Lebesgue measure. Under what conditions can you assert that μ has a density w.r.t v ? In that case, what is that density?

Exercise 29. For $p=1,2, \infty$, check that $\|X-Y\|_{p}$ is a metric on the space $L^{p}:=\left\{[X]:\|X\|_{p}<\infty\right\}$ (here $[X]$ denotes the equivalence class of X under the equivalence relation $X \sim Y$ if $\mathbf{P}(X=Y)=1)$.

Exercise 30. (1) If X is a non-negative r.v., show that $\mathbf{E}[X]=\int_{0}^{\infty} \mathbf{P}[X>t] d t$. What analogous formula holds for a general integrable r.v.?
(2) If X is a non-negative integer valued r.v., then $\mathbf{E}[X]=\sum_{n=1}^{\infty} \mathbf{P}(X \geq n)$.

Exercise 31. Show that the values $\mathbf{E}[f \circ X]$ as f varies over the class of all smooth (infinitely differentiable), compactly supported functions determine the distribution of X.

Exercise 32. (i) Express the mean and variance of of $a X+b$ in terms of the same quantities for X (a, b are constants).
(ii) Show that $\operatorname{Var}(X)=\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}$.

Part B (submit any two)

Exercise 33. Compute mean, variance and moments (as many as possible!) of the $\operatorname{Normal(0,1),~exponential(1),~}$ Beta(p,q) distributions.
Exercise 34. (1) If X_{n} are non-negative r.v. and $X_{n} \downarrow X$, and $\mathbf{E}\left[X_{n}\right]<\infty$ for some n, then show that $\mathbf{E}\left[X_{n}\right] \rightarrow \mathbf{E}[X]$.
(2) If $\mathbf{E}[|X|]<\infty$, then $\mathbf{E}\left[|X| \mathbf{1}_{|X|>A}\right] \rightarrow 0$ as $A \rightarrow \infty$.

Exercise 35. (1) Suppose (X, Y) has a continuous density $f(x, y)$. Find the density of X / Y. Apply to the case when (X, Y) has the standard bivariate normal distribution with density $f(x, y)=(2 \pi)^{-1} \exp \left\{-\frac{x^{2}+y^{2}}{2}\right\}$.
(2) Find the distribution of $X+Y$ if (X, Y) has the standard bivariate normal distribution.
(3) Let $U=\min \{X, Y\}$ and $V=\max \{X, Y\}$. Find the density of (U, V).

Exercise 36. Let $\mu_{n}, \mu \in \mathcal{P}\left(\mathbb{R}^{n}\right)$. Show that $\mu_{n} \xrightarrow{d} \mu$ if and only if $\int f d \mu_{n} \rightarrow \int f d \mu$ for every $f \in C_{b}(\mathbb{R})$.

